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Abstract— The low spatial resolution of light-field image poses
significant difficulties in exploiting its advantage. To mitigate the
dependency of accurate depth or disparity information as priors
for light-field image super-resolution, we propose an implicitly
multi-scale fusion scheme to accumulate contextual information
from multiple scales for super-resolution reconstruction. The
implicitly multi-scale fusion scheme is then incorporated into
bidirectional recurrent convolutional neural network, which aims
to iteratively model spatial relations between horizontally or ver-
tically adjacent sub-aperture images of light-field data. Within
the network, the recurrent convolutions are modified to be more
effective and flexible in modeling the spatial correlations between
neighboring views. A horizontal sub-network and a vertical
sub-network of the same network structure are ensembled for
final outputs via stacked generalization. Experimental results
on synthetic and real-world data sets demonstrate that the
proposed method outperforms other state-of-the-art methods
by a large margin in peak signal-to-noise ratio and gray-scale
structural similarity indexes, which also achieves superior quality
for human visual systems. Furthermore, the proposed method can
enhance the performance of light field applications such as depth
estimation.

Index Terms— Implicitly multi-scale fusion, bidirectional
recurrent convolutional neural network, light-field, super-
resolution.

I. INTRODUCTION

L IGHT Field (LF) originates from the concept of plenop-
tic function [1]–[6] and has recently come into the

spotlight, especially with the emergence of commercial LF
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cameras [7], [8] and the dedication in the Virtual Reality (VR)
field [9]. Compared to conventional cameras, a LF camera
is capable of capturing both intensity values and directions
of rays from real-world scenes. With the additional optical
components like microlens inserted between the main lens
and the image sensor, the rays crossing the main aperture
deposit on pixels according to their spatial positions and
propagation directions. Therefore it can capture a scene from
multiple views in a single photographic exposure. While LF
cameras provide high angular sampling for many computer
vision applications [10]–[13], they are coherently spatially-
undersampled [14]–[18] due to the trade-off between spatial
and angular resolution. The low spatial resolution of LF image
poses significant difficulties in exploiting its advantage.

Considering the narrow baseline between two neighbouring
views of LF image, the parallax is generally around a few
pixels according to the scene. Hence, LF image exhibits
high correlations among the sub-aperture images. From this
perspective, most of the preceding frameworks for Light-Field
image Super-Resolution (LFSR) [15]–[20] generally depend
on prior geometry information as sophisticated image priors
to explicitly warp or register the sub-aperture images from
slightly shifted views. However, the defect lies in that they
basically require accurate geometric information of the scene
as priors. Though numerous frameworks have been presented
for depth estimation from LF image [21]–[26], the estimated
disparities or depths in such passive ways are not so convinc-
ing for explicit pixel warping. As a result, disparity errors
give rise to significant artifacts such as tearing and ghosting,
especially in the occluded areas and along object edges.

To mitigate the dependency of explicit depth or disparity
information for LFSR, we propose an Implicitly Multi-scale
Fusion (IMsF) scheme to accumulate contextual information
from multiple scales of the same image patch. In the absence
of explicit depth information, we facilitate a set of sequent
filters to convolve the same location to aggregate short-
and long-range contextual information essential for Super-
Resolution (SR) reconstruction. The feature maps obtained by
each filter are rescaled before adding them up to obtain multi-
scale encoding feature representation. With the help of IMsF
layer, the network itself will pay attention to the most useful
contextual information for SR reconstruction, without stiffly
inferring the disparities for pixel warping.
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Fig. 1. LF Imaging. (a) Schematic structure of a microlens-based LF camera. A raw LF image can be decoded into a set of sub-aperture images on a 2D
grid. (b) Two-plane parameterization model. (c) Basic structure of a conventional integral camera. (d) Basic structure of a LF camera inserted with microlens
enabling to capture directions of light rays.

With the emergence of large LF datasets [27], data-driven
learning methods based on deep neural network models have
been successfully applied to LFSR. Yoon et al. [28], [29]
are the first to apply the CNN framework to the research of
LFSR. They propose a deep-learning structure called LFCNN
composed of a spatial SR network and an angular SR network
to jointly increase the spatial and angular resolution. However,
in LFCNN, only pairs of sub-aperture images are fed to the
convolutional network without exploiting the high correlation
among adjacent views. Given the fact that Recurrent Neural
Networks (RNN) [30] can well model long-term correspon-
dences for temporal sequences, we incorporate IMsF layers
into Bidirectional Recurrent Convolutional Neural Network
(BRCNN) structure to iteratively model the spatial relations
between two adjacent sub-aperture images forward and back-
ward. Within the network, the common recurrent convolutions
utilized by RNN [30] are modified to be more effective and
flexible for LFSR. We also propose a Horizontal BRCNN
(H-BRCNN) model and a Vertical BRCNN (V-BRCNN)
model to respectively model the spatial correlations hori-
zontally and vertically. Stacked generalization technique [31]
is employed to ensemble these two models for final high-
resolution predictions. All of these elements constitute the
proposed framework LFNet (Fig.2).

The main contributions of this paper are as
follows.

• Bidirectional Recurrent Convolutional Neural Network
embedded with Implicitly Multi-scale Fusion layers
is proposed to iteratively model the spatial correla-
tions between two adjacent sub-aperture images of
LF data. Within the structure, the recurrent convolu-
tions are modified to be more effective and flexible
for LFSR.

• Two sub-networks of the same structure are built to
respectively model spatial correlations between neigh-
bouring views horizontally and vertically, then stacked
generalization is employed to ensemble these two models
for final outputs.

The remainder of this paper is organised as follows.
In Section 2, related work is introduced. Details of the method

are studied in Section 3. Experimental results are presented in
Section 4. Finally, we conclude our paper in Section 5.

II. RELATED WORK

A. LF Imaging

Photographs taken by cameras are projections of the high-
dimensional light signal onto the sensor plane. The microlens-
based LF camera is able to record 4D light fields [4] via
inserting a microlens array in front of its image sensor
(Fig.1(a)). The prototype of the plenoptic camera was firstly
introduced by Adelson and Wang [2] to infer depth from
single lens in 1992. Ng et al. [5] design the hand-held LF
camera (aka. Plenoptic 1.0) along with the imaging analysis
and the digital refocusing method in 2005. On account of the
low resolution limit, Lumsdaine and Georgiev [6] propose
the focused plenoptic camera (aka. Plenoptic 2.0) by setting
the microlens array focused at the focal plane of the main lens
but not the main lens. In this paper, we concern about images
captured by LF cameras with Plenoptic 1.0 optical structure.

Compared with conventional cameras (Fig.1(c,d)), the raw
LF image comprises a large number of sub-aperture images
formed by gathering the pixels of the same position in the
coordinates covered by each microlens. The set of sub-aperture
images are equivalently captured by a pinhole camera array
settled at the aperture plane with slightly shifted views. Two-
plane parameterization model [5] (Fig.1(b)) is usually applied
to represent 4D light fields. Each light ray

L F (x, y, u, v)

is illustrated by the interactions with two parallel planes,
travelling from the coordinate u = (u, v)′ (apostrophe denotes
transpose) on the lens plane to the coordinate x = (x, y)′ on
the microlens array plane as Fig.1(b). By fixing one angular
dimension (for instance i.e.v = v∗), 4D LF data L F (x, y, u, v)
is dimensionally reduced to 3D LF data L F (x, y, u) as

L F (x, y, u) = L F (x, y, u, v∗)

Bolles et al. [32] analyze from the perspective of motion that
a group of Epipolar-Plane Images (EPI) can be reorganized
as a clip of frame sequence. Moreover, EPI are captured
under the condition of nearly static scene, unchanged field
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of view and constant perspective transformation. By analogy,
we argue that sub-aperture images of 3D light fields also have
such simple structure by regular spacing of shifted views.
In contrast with common videos, the spatial continuity and
dependency between adjacent sub-aperture images of 3D LF
data are much more regular. We exploit this unique clue of
LF data by modeling the spatial correspondences between
adjacent sub-aperture images for LFSR.

B. Light-Field Image Super-Resolution

To handle the resolution trade-off of LF cameras, most
of the preceding methods can be divided into two main
categories, i.e. reconstruction-based frameworks and learning-
based algorithms. Reconstruction-based methods require both
accurate geometric information of the scene as priors and
fine parameter tuning for optimization, which are usually
computational expensive. Bishop et al. [15] design a Bayesian
framework to recover more information from geometric struc-
ture of the scene and super-resolve LF image. Lim et al. [17]
analyze that 2D angular resolution contains spatially subpixel
shifted information, which provides the redundant data used
by SR algorithms. Georgiev and Lumsdaine [16] also establish
subpixel correspondences with registration provided by the
geometry of the microlens array. After disparity estimation
based on EPI, Wanner and Goldluecke [19] optimize a vari-
ational framework to generate super-resolved novel views of
the scene.

Other reconstruction-based works for LFSR basically focus
on projection and resample of LF data [27], [33]–[38].
Liang and Ramamoorthi [20] demonstrate that typical LF
cameras preserve frequency components above the spatial
Nyquist rate and achieve spatial resolution above the microlens
resolution with depth information as guidance to project the
LF samples. Wang et al. [39] redefine one mapping function
between the disparity of certain pixel and its shearing shift
which relieves the dependency of camera parameters and depth
information in the projection-based methods. Cho et al. [40]
describe the procedures to calibrate a raw Lytro image and
propose a dictionary-learning based interpolation method for
LFSR. Marwah et al. [41] introduce light field atoms and
utilize overcomplete dictionaries as a sparse representation of
natural light fields for compressive LF photography. Farru-
gia et al. [42] propose a dictionary-learning based method for
LFSR which learns the mapping between low-resolution (LR)
and high-resolution (LR) patch volumes.

Projection-based SR methods for LF image are closely
related to focal stack rendering. Using a plenoptic camera,
conventional photographs focused on certain planes can be
obtained through specific projections of the 4D light fields
onto two spatial dimensions [5], [33]. Light fields and focal
stacks are composed of multiple images that are either seen
through different portions of the aperture, or focused at
varying depths [38], [43]. The focal stack transform intro-
duced by Nava et al. [34],and Jacobs et al. [35] could
estimate the all-in-focus image of a scene at high resolution.
Pérez et al. [36], [37] propose the fourier slice super-resolution
to get the super-resolved discrete focal stack transform.

Lee and Tai [44] state that the correlation among differently
focused narrow depth-of-field images in a focal stack can
be used to infer HR details for SR. It should be noted that
these works that deal with focal stack transformation are quite
different from the problem discussed in this paper, which
jointly super-resolves sub-aperture images of LF data.

Limited by the small size of former LF datasets several
years ago [45], learning-based methods for LFSR are rarely
applicable. Yoon et al. [28] are the first to apply CNN
framework to the research of LFSR. They propose a new
deep learning structure called LFCNN composed of a spatial
SR network and an angular SR network to jointly increase
the spatial and angular resolution. In subsequent work [29],
they refine the network architecture with a single spatial
SR network and share some portions of the convolutions in
angular SR network, which reduces the number of parameters
by half. However, in LFCNN [28], [29], pairs of sub-aperture
images are directly fed to the convolutional network without
modeling the spatial correlations between them.

C. Deep-Learning Frameworks for Image Super-Resolution

Deep-learning methods [46]–[50] have been proven to make
remarkable progress in modern vision tasks such as classifi-
cation, detection, recognition, etc. Among the deep-learning
methods for Single Image Super-Resolution (SISR), SRCNN
is a representative state-of-the-art framework proposed by
Dong et al. [51], which learns the mapping from LR to
HR image in an end-to-end manner. SRCNN only consists
of three layers, i.e. patch representation, non-linear mapping
and reconstruction. Based on this work, Dong et al. [52]
re-design the SRCNN structure to achieve a speed up of
more than 40 times with even superior restoration quality
named FSRCNN. Compared with SRCNN’s shallow models,
Kim et al. [53] propose VDSR, which is a very deep network
with 20 weight layers for SISR. They use residual-learning and
high learning rates to optimize the network at a fast speed of
convergence. Also, Kim et al. [54] propose DRCN structure
with a very deep recursive layer, which can improve SR results
without introducing new parameters. Tai et al. [55] combine
residual learning and recursive learning to build a deeper CNN
model called DRRN. More recently, Lai et al. [56] propose
LapSRN which adopts the Laplacian pyramid to progressively
reconstruct the sub-band residuals of high-resolution images.

D. Multi-Frame Super-Resoltuion

Multi-frame SR techniques generally exploit the subpixel
shift between input images to achieve spatial resolution
enhancements. A large portion of the literature concern about
VideoSR, which mainly model and exploit temporal corre-
spondences among video frames. Baker and Kanade [57]
extract optical flow to model the temporal correspondences
in video sequences for video SR. Then, various improve-
ments [58], [59] are explored to better handle visual motions.
However, these methods suffer from the high computational
cost and low accuracy due to the motion estimation. Moreover,
motion estimation and global warping models of video SR
frameworks are not suitable for direct application of spatial SR
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Fig. 2. Overview of the proposed framework LFNet. The degraded low-resolution 4D LF data Llr
F (x, y, u, v) as input is transformed to horizontal 3D LF data

Llr
F (x, y, u) by setting v = v∗ and vertical 3D LF data Llr

F (x, y, v) by setting u = u∗. The spatial resolution of Llr
F (x, y, u) is enhanced by H-BRCNN and

Llr
F (x, y, v) is enhanced by V-BRCNN. Once predictions of Lhr

F (x, y, u, v∗) and Lhr
F (x, y, u∗, v) are acquired, stacked generalization technique is employed

to ensemble them for the final output Lhr
F (x, y, u, v).

in LF data. Huang et al. [30] propose a Bidirectional Recurrent
Convolutional Network (BRCN) as an end-to-end framework
to efficiently learn the temporal correspondences for multi-
frame SR, which achieves better performance and faster speed.
Recently, Caballero et al. [60] exploit temporal correlations
and improve reconstruction accuracy while maintaining real-
time speed by introducing spatio-temporal subpixel convolu-
tion networks. The category of video SR approaches appears to
be similar to LFSR, but not specially tailored for LF structure.

III. METHODOLOGY

A. Overview

Given degraded low-resolution 4D LF data Llr
F (x, y, u, v) at

the resolution of (H, W, P, P), the goal of LFSR is to restore
its high-resolution counterpart Lhr

F (x, y, u, v) at the resolution
of (s H, sW, t P, t P) with recovered high-frequency details,

Llr
F (x, y, u, v)

L F S R−→ Lhr
F (x, y, u, v)

where s is the upsampling factor for spatial dimensions
while t for angular dimensions. In this paper, we focus on
upsampling the spatial resolution (x, y) while not the angular
resolution (u, v) of 4D LF data, i.e. s > 1, t = 1. One sub-
aperture image from the view (i, j) of Llr

F (x, y, u, v) can be
represented as

I lr
i, j = Llr

F (x, y, i, j)

Llr
F (x, y, u, v) is transformed to horizontal 3D LF data

Llr
F (x, y, u) = Llr

F (x, y, u, v∗)

by setting v = v∗ and vertical 3D LF data by setting u = u∗.

Llr
F (x, y, v) = Llr

F (x, y, u∗, v)

If the angular resolution of Llr
F (x, y, u, v) is P × P , 3D LF

data consist of P sub-aperture images

I u
p = Llr

F (x, y, u p)

or

I v
p = Llr

F (x, y, v p)

where I u
p and I u

p+1 (or I v
p and I v

p+1, p ∈ {1, 2, . . . , P − 1})
are sub-aperture images from neighbouring views, which have
nearly constant perspective transformation. Hence, we treat
Llr

F (x, y, u) and Llr
F (x, y, v) as a sequence of N images to

respectively enhance the spatial resolution of 3D LF data hor-
izontally and vertically. Once predictions of Lhr

F (x, y, u, v∗)
and Lhr

F (x, y, u∗, v) are acquired, stacked generalization tech-
nique [31] is employed to ensemble them for the final output
Lhr

F (x, y, u, v) as shown in Fig.2.

B. Implicitly Multi-Scale Fusion Layer

Multi-scale inference has been utilized in GoogLeNet’s
Inception structure [48] to effectively aggregate local infor-
mation, allowing more robust and accurate predictions. More
recently, Lai et al. [56] adopts the idea of Laplacian pyramid
in SISR which facilitates multi-scale information. Considering
that the disparities between two adjacent sub-aperture images
are generally around a few pixels according to the scene, small
areas centered at the same location affect pixel warping when
explicitly registered. Moreover, contextual information from
multiple scales of the image patch contains short- and long-
range essential elements for SR reconstruction.

As shown in Fig.3, we propose IMsF layer by facilitating
four sequent convolutional layers with the same kernel size f
and channel N to convolve the same image region as

h1 = σ(W1 ∗ Iin + b1) (1)

hn = σ(Wn ∗ hn−1 + bn), n = 2, 3, 4 (2)

where Iin denotes an input view in 3D LF data, Wn and
bn are the convolution kernel and bias at layer n, operator
∗ represents convolutional operation, σ(·) is the activation
function. The size of W1 is N×c× f × f and Wk(k ∈ {2, 3, 4})
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Fig. 3. Comparisons of an IMsF layer to other structures. (a) Proposed
IMsF layer. Four sequent convolutional layers of the same kernel size f
and channel number N are facilitated to convolve the same region from the
reference view. The activations of each layer are rescaled by learned weights,
then added together to obtain multi-scale encoding feature representation.
(b) IMsF without rescaling. The activations of each layer are directly added
up. (c) Resnet Blocks [50]. (d) DRCN block [54].

are N × N × f × f , where N is the number of filters,
c is the number of input channels, f is the filter size.
A straightforward way to fuse hn is to directly add them up.
However, we experimentally find that adding them up directly
would greatly weaken the representative ability of the model
(Section IV.B). Rather, we introduce additional parameters γn

to rescale hn as Eq.3, where operator ⊗ denotes the channel-
wise multiplication. These parameters are learned along with
the other model parameters, and effectively strengthen the
representation power of the network.

̂hn = γn ⊗ hn (3)

The rescaled representation ̂hn are then added together as
Eq.4. Hms denotes the multi-scale encoded representation and
bms is the bias.

Hms =
∑

n∈{1,2,3,4}
̂hn + bms (4)

With the multi-context feature representation encoded by
IMsF layer, the network itself will adaptively focus on the
contextual information that is the most useful for accurately
upsampling. Through IMsF, we pay more attention on con-
textual information fusion from multiple scales rather than
explicit pixel warping or image registration.

C. Bidirectional Recurrent Convolutional Neural Network

A group of sub-aperture images in 3D LF data can be
reorganized as a clip of frame sequences with static scene,
unchanged field of view and constant perspective transforma-
tion. In the absence of explicit depth information as priors,
we incorporate IMsF layers into BRCNN structure to itera-
tively model the spatial relations between neighbouring views.
The proposed IMsF-BRCNN is composed of a forward sub-
network and a backward sub-network as shown in Fig. 4.
In order to enhance the spatial resolution of 3D LF data,
we propose H-BRCNN and V-BRCNN to respectively model

the horizontal and vertical spatial relations, which are of
the same network structure. To alleviate the border effect of
BRCNN, 3D LF data are padded with I0 the same as I1 in the
forward sub-network. In the backward network, 3D LF data
are padded with IN+1 the same as IN as Fig.4.

In the first step, each pair of sub-aperture images denoted
by Io (one sub-aperture image) and Iad j (adjacent to Io) in
3D LF data1 is fed to IMsF layer to get the multi-scale
encoded feature representation, H o

ms for Io and H ad j
ms for Iad j

respectively. Note that all the IMsF layers in BRCNN share
the parameters.

To model the spatial correlations between neighbouring
views, two hidden layers for reconstruction with recurrent con-
volutions are introduced. In the first hidden layer, activations
for adjacent sub-aperture image of this layer H ad j

1 and H o
ms

are considered as inputs to get H o
1 in Eq.5.

H o
1 = σ(Wr1 ∗ cat (Wc1 ∗ H o

ms, H ad j
1 ) + b1) (5)

where Wr1 denotes the kernel of recurrent convolution, Wc1
is the kernel of the feedforward convolution for the first layer,
b1 is the bias, cat (·, ·) represents concatenating operation
along the channel dimension as shown in Fig.5(b). The size of
Wr1 is N1 ×2N1 ×1×1 and that of Wc1 is N1 × N × f1 × f1,
where N is channel number of H o

ms , N1 and f1 are the filter
number and size of Wc1. It can be deduced that recurrent
convolutions utilized in BRCN by Huang et al. [30] as Eq.6
can be regarded as a special case of our structure,

H o
1 = σ(W ′

c1 ∗ H o
ms + W ′

r1 ∗ H ad j
1 + b1) (6)

in case that the first half parameters N1 × N1 × 1 × 1 of Wr1
for weighting Wc1 ∗ H o

ms would be fixed to 1 in entries of
(n1, n1, 1, 1), where n1 ∈ {0, 1, . . . , N1} and others would be
set to 0. Meanwhile, those of the second half N1×N1×1×1 for
weighting H ad j

1 are the same as BRCN [30]. In our modified
design of recurrent convolutions, parameters for weighting
Wc1 ∗ H o

ms are also learnable rather than fixed to 1, which is
more effective and flexible in modeling the spatial correlations
between neighbouring views. Within the forward sub-network,

H n+1
f 1 = σ(W f

r1 ∗ cat (W f
c1 ∗ H n+1

ms , H n
f 1) + b f

1 ) (7)

where n ∈ {0, 1, . . . , N −1} and f denotes f orward . Within
the backward sub-network,

H n
b1 = σ(W b

r1 ∗ cat (W b
c1 ∗ H n

ms, H n+1
b1 ) + bb

1) (8)

where n ∈ {1, 2, . . . , N} and b denotes backward .
In the second hidden layer, the inputs are H o

1 and H ad j
2 to

produce H o
2 ,

H o
2 = σ(Wr2 ∗ cat (Wc2 ∗ H o

1 , H ad j
2 ) + b2) (9)

where Wr2 and Wc2 denote convolutional kernels of recurrent
and feedforward convolutions in the second layer, b2 is the
bias. The size of Wr2 is N2 × 2N2 × 1 × 1 and that of Wc2 is
N2 × N1 × f2 × f2, where N1 is channel number of H o

1 , N2

1For clarity, horizontal and vertical are not differentiated here.
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Fig. 4. Structure of the proposed IMsF-BRCNN. 3D LF data containing a sequence of N views is fed into the network. The network structure consists
of a forward sub-network and a backward sub-network to model the spatial correlations between two neighbouring views from different directions. The
two sub-networks share the parameters of all IMsF layers while other layers don’t. w f and wb are learnable parameters to get weighted average of both
predictions.

Fig. 5. Comparisons of recurrent convolutions. (a) The structure utilized
by Huang et al. [30] (b) The proposed recurrent convolutions tailored for LF
structure. (a) can be regarded as a special case of (b).

and f2 are filter number and kernel size of Wc2. Within the
forward sub-network,

H n+1
f 2 = σ(W f

r2 ∗ cat (W f
c2 ∗ H n+1

f 1 , H n
f 2) + b f

2 ) (10)

within the backward sub-network,

H n
b2 = σ(W b

r2 ∗ cat (W b
c2 ∗ H n

b1, H n+1
b2 ) + bb

2) (11)

In the output layer, we just carry out feedforward convo-
lutions to yield the estimated HR predictions I o

est without the
activation function,

I o
est = Wout ∗ H o

2 + bout (12)

where Wout denotes the kernel of feedforward convolution in
the output layer and bout the bias. The size of Wout is c×N2 ×
fout × fout , where N2 is channel number of H o

2 , c and fout

are output channel and filter size of Wout . Within the forward
sub-network,

I f
n = W f

out ∗ H n
f 2 + b f

out (13)

within the backward sub-network,

I b
n = W b

out ∗ H n
b2 + bb

out (14)

Further, we introduce learnable parameters w f and wb to
get weighted average of these two predictions,

I n
est = w f I f

n + wb I b
n (15)

D. Loss Function and Stacked Generalization

Most of the preceding deep-learning-based methods for
SR perform network learning and parameters updating by
minimizing the MSE loss function between the predicted HR
outputs Ipred and the ground truth Igt via Stochastic Gradient
Descent (SGD).

L M S E =
∥

∥Igt − Ipred
∥

∥

2
2

numel(Igt )
(16)

where ‖·‖2 denotes L2 Norm, numel(·) denotes number of
elements. The weight decay parameter is also popular in gov-
erning the regularization term of the neural network to avoid
overfitting. Hence, the unified loss function of our network to
minimize during training combines MSE loss function L M S E

and L1 norm of the net parameter � as Eq.17, where λ is the
balancing parameter of weight decay.

L = L M S E + λ‖�‖1 (17)
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By using pre-trained network model of H-BRCNN for
inference, it yields HR predictions I H

est in horizonal 3D LF
data Llr

F (x, y, u),

I H
est = �(Llr

F (x, y, u); θH ) (18)

where θH denotes the network parameters of H-BRCNN.
By analogy, V-BRCNN produces HR predictions I V

est in ver-
tical 3D LF data Ll f

F (x, y, v),

I V
est = �(Llr

F (x, y, v); θV ) (19)

Stacked generalization proposed by Wolpert [31] is a way of
combining multiple models. In this paper, we employ simple
stacked generalization to ensemble the set of predictions
{I H

est , I V
est } through a linear combination as Eq.20.

Iest = wH I H
est + wV I V

est (20)

wH and wV are optimized through gradient descent by min-
imizing the L2 norm loss between ground truth Igt and Iest

as Eq.21.

arg min
wH ,wV

∥

∥Igt − Iest
∥

∥

2

s.t . wH + wV = 1 (21)

E. Implementation Details

Within IMsF layers, we experimentally set N = 64, f = 3
and use zero padding to avoid border effects. The activation
function σ(·) is rectified linear unit (ReLu), i.e. σ(x) =
max(0, x). The filters of W1 are randomly initialized from
a zero-mean Gaussian distribution with standard deviation
0.01 and Wk (k ∈ {2, 3, 4}) are initialized in the same
manner but with standard deviation 0.001, all the bias bk

(k ∈ {1, 2, 3, 4}) are initialized to zero. γk (k ∈ {2, 3, 4}) is
initialized to 1. We only deal with luminance channel in the
YCrCb color space so that the input channel c is 1.

In the proposed IMsF-BRCNN, we experimentally set N1 =
32, f1 = 5, N2 = 16, f2 = 1, fout = 9. All the
filters of convolutional layers are initialized from a zero-mean
Gaussian distribution with standard deviation 0.01 except that
the first half parameters of Wr1 and Wr2 are set to 1 in some
certain entries. All the bias are initialized to 0.1. w f and wb

are initialized to 0.5. Zero padding is also applied to avoid
border effects. The forward and backward sub-network of the
proposed IMsF-BRCNN don’t share the parameters except the
IMsF layer. There are two IMsF-BRCNNs in the proposed
framework. Each has two sets of parameter, where θ

f
H and θb

H
are updated for H-BRCNN, along with θ

f
V and θb

V updated for
V-BRCNN.

The optimization is conducted by the mini-batch momentum
SGD method with a batch size of 64, momentum of 0.9 and
weight decay of λ = 0.005. The learning rate is initially set
to 1e − 3 for the weights in the output layer while 1e − 2 for
other layers. We then decrease the learning rate by a factor
of 0.1 every 10 epochs until the validation loss converges.

The proposed model is implemented using the Theano
package [61] and proceeded on a workstation with an Intel
3.6 GHz CPU and a TiTan X GPU. A LF image at the

resolution of 625 × 434 × 7 × 7 can be 4× spatially super-
resolved within 4 seconds, roughly 0.08s per sub-aperture
image. The source code and real-world datasets to reproduce
the experimental results will be released upon the acceptance
of submission.

IV. EXPERIMENTS

A. Setup

To validate the effectiveness of the proposed framework,
we conduct experiments on both public and self-captured LF
datasets of synthetic and real-world scenes.

1) Synthetic Dataset: For fair comparison, we use synthetic
LF images from the public HCI database [45] and follow
the same protocol in LFCNN [28] to split the training and
test datasets. Buddha and Mona are selected as test samples
and the rest 10 LF samples are used to generate patches for
training. Both sub-aperture images and ground-truth depths for
all views of HCI synthetic datasets are provided at the spatial
resolution of 768 × 768, angular resolution of 9 × 9. 3D LF
patches of size 48×48×5 are randomly cropped from the same
region of 5 adjacent sub-aperture images horizontally or verti-
cally in the training datasets as the ground truth HR samples.
They are spatially ×2 downsampled to 24 × 24 × 5 and
upsampled again using the bicubic interpolation to generate
the corresponding LR training samples. We double the training
datasets by adding a copy of each LF sample with permuted
spatial dimensions, i.e. (x, y, u) to (y, x, u) and (x, y, v) to
(y, x, v). Two training datasets are constructed in this manner
for training H-BRCNN and V-BRCNN respectively, either of
which has nearly 100000 pairs of LR and HR samples. The
test data are also spatially ×2 downsampled and re-upsampled
using bicubic interpolation.

2) Real-World Dataset: To train the proposed network for
real-world scenes, we take more than 200 LF images with a
Lytro Illum camera, which include various light conditions,
textures and depths under indoor and outdoor environment.
We use Light Field Toolbox v0.4 [63] to decode the raw
LF images and extract 4D LF data at the spatial resolution
of 625 × 434 and the angular resolution of 9 × 9. In order
to increase the difficulty of the task for real-world scenes,
we follow the same protocol in BRCN [30] to generate the
training and test datasets, i.e. 1) using the Gaussian filter
with standard deviation 2 to smooth each sub-aperture image,
2) downsampling sub-aperture images by a factor of 4 which is
usually considered as the most difficult case in SR. Similarly,
we extract the training datasets for H-BRCNN and V-BRCNN
in the same manner as stated in the synthetic experiments.

B. Evaluation of IMsF layer

To evaluate the effectiveness of proposed IMsF layer,
we substitute this layer in LFNet with other structures,
including IMsF without rescaling, Resnet block [50], DRCN
block [54] as Fig.3. LFNet without IMsF layer serves as a
baseline. Training on the same real-world datasets split with
batch size 64, we record average PSNR on validation set every
200 iterations within 2×104 iterations. The results are depicted
in Fig.6.
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Fig. 6. Evaluation of IMsF layer. The proposed IMsF layer in LFNet is substituted with other structures, including IMsF without rescaling, Resnet block [50],
DRCN block [54]. The PSNR of proposed IMsF layer after convergence is nearly 0.2dB higher than that of IMsF without rescaling and 0.5dB higher than the
baseline, which can demonstrate that the proposed IMsF layer is effective in improving the performance of LFSR. Compared with other structures, the proposed
IMsF layer achieves superior results with faster convergence speed.

TABLE I

QUANTITATIVE EVALUATIONS OF HCI SYNTHETIC LF DATASETS

Compared with other structures, the proposed IMsF layer
achieves superior results with faster convergence speed. The
DRCN block [54] obtains a little higher PSNR than IMsF
layer without rescaling but converges a bit more slowly. The
PSNR of proposed IMsF layer after convergence is nearly
0.2dB higher than that of IMsF without rescaling and 0.5dB
higher than the baseline, which can demonstrate that the
proposed IMsF layer is effective in improving the performance
of LFSR.

C. Quantitative Evaluations

1) Results on Synthetic Dataset: In synthetic experi-
ments, we compare LFNet with four LFSR methods [19], [29],
[39], [62]. Table I shows the results of quantitative evaluations
on HCI synthetic datasets. The methods in [19], [39], and [62]
are all reconstruction-based frameworks that require dispar-
ity or depth information as priors to independently super-
resolve each view of LF data. As HCI synthetic datasets
provide ground-truth depths, we just downsample the required
disparity maps to the resolution of LR sub-aperture images
accordingly. LFCNN [29] is a deep-learning-based structure
which contains a spatial SR network and an angular SR
network. We only compare with its spatial SR network. The
results of these comparative methods are obtained via the

source codes provided by the authors and the parameters are
carefully tuned to maximize performance.

The peak signal-to-noise ratio (PSNR) and the gray-scale
structural similarity (SSIM) [64] are used as the performance
indexes. We measure the PSNR and SSIM scores of all the
estimated HR views and report the minimum (Min), average
(Avg) and maximum (Max) values for each LF sample. As seen
in Table I, our method outperforms other methods by a large
margin in both PSNR and SSIM. The proposed approach can
surpass state-of-the-art LFCNN [29] by 1.47 dB of Buddha
and 0.74 dB of Mona on average. Due to degradation of
sub-aperture images and corresponding disparities, the perfor-
mance of [19] and [62] drops sharply, even worse than simple
bicubic interpolation.

2) Results on Real-World Dataset: For real-world scenes,
we compare LFNet with seven methods: three LFSR meth-
ods [29], [39], [62], one video SR method BRCN in [30]
and three SISR method, including FSRCNN in [52], VDSR
in [53], DRRN in [55]. Per-view disparity map needed by the
method in [39] is estimated based on EPI from 4D LF data.
PSNR and SSIM are also chosen as performance indexes.
We select 6 LF samples captured by Lytro Illum Camera
for comparisons including Stone, Bush, Glass, Door, Pillar,
Flower. The minimum (Min), average (Avg), and maximum
(Max) values for each LF sample are reported.
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TABLE II

QUANTITATIVE EVALUATIONS OF REAL-WORLD SCENES CAPTURED BY LYTRO ILLUM CAMERA

Table II shows the quantitative evaluations of these LF
samples. From Table II, it can be seen that the proposed
approach yields higher PSNR and SSIM scores on aver-
age than other state-of-the-art methods among all the LF
samples. It is quite challenging to estimate precise disparity
maps from LF images of real-world scenes. So registration-
based methods [39] and [62] fail to reconstruct reliable
HR results, causing worse performances even than simple
bicubic interpolation. The state-of-the-art learning-based SR
methods aiming to super-resolve single image FSRCNN [52],
VDSR [53], DRRN [55]; LF image LFCNN [29]; video frames
BRCN [30] give quite close results. DRRN [55] achieves sec-
ond best scores in all the samples on PSNR while BRCN [30]
achieves second best scores in 2 out of 6 samples on SSIM.
Our method exceeds second best results among these methods
by 0.06 ∼ 0.24dB in PSNR and 0.0037 ∼ 0.0099 in SSIM,
0.16dB and 0.0068 on average.

As shown in Table I and II, H-BRCNN and V-BRCNN
obtain very close results in PSNR. After ensembling them
through stacked generalization, final SR results only achieve
tiny improvements. However, nearly all the LF samples gain
considerable increase in SSIM. It demonstrates that combina-
tion of H-BRCNN and V-BRCNN through stacked general-
ization makes SR results of the proposed framework closer to
real image in structural similarity and better for human visual
systems.

D. Qualitative Comparisons

Due to space limitation, we only display estimated HR
central view of [30], [53], and [55] along with ground truth,
bicubic interpolation and our method for qualitative compar-
isons. Readers are strongly recommended to enlarge and
view these figures on screen for better comparisons. See
more results in the supplement.

As shown in Fig.7-10, the results of VDSR [53] and
DRRN [55] are oversmoothed with blurry details, although
they achieve high PSNR and SSIM scores. BRCN [30] recov-
ers more details but suffers from severe ringing artifacts espe-
cially along boundaries and edges. For instance, in Fig.7(e),
textures on surface of the stones can’t be clearly resolved and
the boundary of the white line is rather vague. The result
of BRCN [30] in Fig.9(e) reveals more plausible details of
the door but comes along with severe ringing artifacts which
are not visual-pleasing. By contrast, our SR results show
photo-realistic details and much fewer ringing artifacts where
boundaries of local structure are well preserved. The proposed
framework LFNet obtains superior SR results than other state-
of-the-art methods in visual effects.

E. Applications

As to the super-resolved LF image, adequate high-frequency
details are restored after applying the proposed algorithm,
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Fig. 7. Qualitative Comparisons of Stone. Only central view of 4D LF data is displayed. (a) Ground Truth (b) Bicubic Interpolation. (c) VDSR [53]
(d) DRRN [55] (e) BRCN [30] (f) LFNet(ours).

Fig. 8. Qualitative Comparisons of Flower. Only central view of 4D LF data is displayed. (a) Ground Truth. (b) Bicubic Interpolation. (c) VDSR [53]
(d) DRRN [55] (e) BRCN [30] (f) LFNet(ours).

Fig. 9. Qualitative Comparisons of Door. Only central view of 4D LF data is displayed. (a) Ground Truth. (b) Bicubic Interpolation. (c) VDSR [53]
(d) DRRN [55] (e) BRCN [30] (f) LFNet(ours).

Fig. 10. Qualitative Comparisons of Pillar. Only central view of 4D LF data is displayed. (a) Ground Truth. (b) Bicubic Interpolation. (c) VDSR [53]
(d) DRRN [55] (e) BRCN [30] (f) LFNet(ours).

which is favorably beneficial for real-world LF applications
such as depth estimation. Table III shows quantitative compar-
isons on scenes antinous and kitchen from the 4D light field
benchmark [65] by applying the depth estimation algorithm
in [21] on SR results of bicubic interpolation, BRCN [30],
VDSR [53], DRRN [55] and LFNet, along with ground
truth. The selected samples are challenging with transparent

reflections, occlusions and complex geometries. It can be seen
that the proposed framework LFNet achieves better results
than other methods.

To test the robustness of the proposed algorithm, we per-
form qualitative comparisons on real-world scenes. Taking
LF sample Bush for instance, we apply the state-of-the-art
depth estimation method [24] on ground-truth LF image,
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Fig. 11. The proposed method can enhance the performance of depth estimation. Warm color indicates nearby objects and cool color indicates distant objects.
(a) Central View of LF sample Bush. (b) Estimated depth map from ground-truth LF image. (c) Estimated depth map from SR results of bicubic interpolation.
(d) Estimated depth map from SR results of LFCNN [29]. (e) Estimated depth map from SR results of the proposed method.

TABLE III

RMSE (ROOT MEAN SQUARED ERRORS) STATISTICS OF DEPTH
ESTIMATION APPLICATION ON HCI NEW DATASET [65]

SR results of bicubic interpolation, LFCNN [29] and the
proposed approach. The estimated depth maps are shown
in Fig.11. The depth map inferred from the upsampled LF
image via our algorithm is closer to the result of ground-
truth LF image with more accurate depth layers and structural
boundaries, which demonstrates that the proposed method can
enhance the performance of depth estimation.

V. CONCLUSION

In this paper, IMsF scheme has been proposed to accumulate
contextual information from multiple scales for SR reconstruc-
tion. IMsF layers are then incorporated into BRCNN structure
to iteratively model spatial correlations between two adja-
cent sub-aperture images of LF data. Within IMsF-BRCNN,
the recurrent convolutions are specially tailored for LFSR.
A horizontal and a vertical IMsF-BRCNN have been built to
respectively super-resolve 3D LF data and ensembled through
stacked generalization. We have validated the effectiveness of
IMsF layer and the proposed method on both synthetic datasets
and real-world scenes captured by a LF camera. Compared
with state-of-the-art SISR, Video SR and LFSR methods,
LFNet has achieved much better results not only in terms of
PSNR and SSIM indexes but also of superior visual quality.
Furthermore, we demonstrate that the proposed framework can
enhance the performance of LF applications such as depth
estimation. In the future, we will apply LFNet to more image
restoration problems in LF imaging.
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