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Abstract

Iris semantic segmentation in less-constrained scenarios
is the basis of iris recognition. We propose an end-to-end
trainable model for iris segmentation, namely Seg-Edge bi-
lateral constraint network (SEN). The SEN uses the edge
map and the coarse segmentation to constrain and optimize
mutually to produce accurate iris segmentation results. The
iris edge map generated from low level convolutional lay-
ers passes detailed edge information to iris segmentation,
and the iris region generated by high level semantic seg-
mentation constrains the edge filtering scope which makes
the edge aware focusing on interesting objects. Moreover,
we propose pruning filters and corresponding feature map-
s that are identified as useless by l1-norm, which results
in a lightweight iris segmentation network while keeping
the performance almost intact or even better. Experimen-
tal results suggest that the proposed method outperforms
the state-of-the-art iris segmentation methods.

1. Introduction
Iris recognition is a reliable identification technique due

to the stability and uniqueness of the iris in biometrics. It
is widely used in banks, mines and other places with high
security levels. There are many disadvantages such as long-
distance, on-the-move, occlusion and reflection, which se-
riously impact the quality of acquired iris images. As a cru-
cial part of iris recognition, an excellent iris segmentation
simplifies processes and improves the recognition accuracy.

Traditional iris segmentation methods usually consist
of several main steps, including preprocessing, denoising,
boundary detection, and post-processing. Daugman [7] pro-
poses using an integro-differential operator to detect eyelids
and locate iris boundaries. Wildes [26] presents exploiting
a circular Hough transform to localize iris boundaries in iris
images. Tisse et al. [25] implement an iris segmentation
method by combining integro-differential operators and the
gradient decomposed Hough transform. Tan et al. [24] pro-
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pose a clustering based method to identify non-iris regions
with an integrodifferential constellation. Tan [23] develop
an approach exploiting random walker algorithm with a se-
quence of post-processing. Zhao [27] propose a total vari-
ation formulation using l1-norm regularization for the iris
localization. These methods need manually designed rules
or features to solve the occlusion, reflection, blur and oth-
er matters. Several steps of pre- and post-processing also
increase the complexity of segmentation.

Recent years, methods based on neural network are pro-
posed for pixel level iris segmentation. Proença [17] ex-
ploits the neural network with one hidden layer for iris
pixel-level classification. Tan and Kumar [22] use a typi-
cal 3-layer feed forward neural network. These two meth-
ods use manually extracted features and pre- and post-
processing operations. Liu et al. [14] propose a multi-
scale fully convolutional network without pre- and post-
processing. They use the fusion layer to sum the output of
each layer after up sampling. Although it has been shown
that the deep learning based methods perform well, their
large number of parameters and massive calculation limit
application. There is still a lot of work to do about network
structures and model pruning for the iris segmentation.

Motivated by prior studies, we propose an end-to-
end model for iris segmentation without pre- and post-
processing, namely Seg-Edge bilateral constraint network
(SEN). Average segmentation errors obtained by SEN im-
prove over the state-of-the-arts by 2.22% and 22.03% on
UBIRIS.v2 [18] and CASIA.v4-distance [1] dataset respec-
tively. The main contributions of this paper include:

1) By using the bilateral constraint domain transform, the
SEN not only uses the edge map to improve the segmenta-
tion result as [9], but also constrains the edge aware inside
the segmented iris region. It makes the network focusing
on boundary between iris and non-iris (sclera, pupil, eyelid,
eyelash, spot and other occlusion), while ignoring edge of
other facial parts (like eyebrow, canthus, and glasses frame).

2) The edge map is generated from all the low level con-
volutional layers (from conv1 to conv5), which provide rich
edge features at different scales or sharpness degrees.

3) We prune the model by l1-norm method, resulting in
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the lightweight network with better performance.

2. Related work

Semantic segmentation With the development of deep
learning methods, semantic segmentation has attracted
more and more attention. The appearance of Fully Con-
volutional Networks (FCN) [16] led to a rapid increase
in the number of end-to-end semantic segmentation net-
works. The FCN model transforms all of fully connected
layers to convolutional layers which allows the input im-
age of any size. Built upon FCN, U-Net [19] adopts an
encoder-decoder structure which consists of a contracting
path and a symmetric expanding path. Similarly, SegNet
[2] is also built on an encoder-decoder structure, but it use
max-pooling indices to enhance location information. The
DeepLab model proposed in [5] uses atrous convolution
and fully connected Conditional Random Field (CRF) to
avoid the reduction of the spatial resolution of feature map-
s. The atrous convolution effectively enlarges the field-of-
view of filters to incorporate larger context without increas-
ing the number of parameters and the amount of computa-
tion. And the CRF greatly improves the localization perfor-
mance. Based on [5], DeepLab v2 [6] uses Atrous Spatial
Pyramid Pooling (ASPP) with multiple sampling rates to
robustly segment objects at multiple scales. This method
gets the excellent result at the PASCAL VOC-2012 seman-
tic image segmentation task [8].

Performance optimization To further enhance the per-
formance of the model like VGG, some methods exploit
information from intermediate convolutional layers to im-
prove the segmentation result. In [14], MFCN which con-
sists of 31 convolutional layers fuses 6 convolutional layers
from shallow to deep to capture both the coarse and fine
details. Moreover, the domain transform [9] is used as an
edge-preserving filter and is exploited to improve the se-
mantic segmentation result by aligning segmentation results
with object boundaries [4].

Model pruning For model compression, a lot of meth-
ods have been proposed. Le et al. [12] propose Optimal
Brain Damage to remove unimportant weights from a net-
work. They use second-derivative information to make a
tradeoff between network complexity and training set er-
ror. Han et al. [10] remove the connection whose weight
is lower than a threshold after an initial training phase, and
converts a dense, fully-connected layer to a sparse layer. D-
ifferent from methods above, Li et al. [13] present removing
filters together with their connecting feature maps to reduce
the computation cost. Under the guidance of l1-norm, this
approach does not produce sparse connectivity patterns and
not need the additional regularization.
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Figure 1. The architecture of the proposed SEN.

3. Proposed methods

3.1. Seg­Edge bilateral constraint network

The SEN is mainly composed of three components, as
shown in Figure 1. The first is the backbone structure which
is an improved version of VGG-16 [20]. The second gen-
erates the iris edge map using rich convolutional features
(RCF) The third is the bilateral constraint domain transfor-
m which generates the final result.

3.1.1 Backbone structure

We exploit the powerful FCN model DeepLab v2 [6] as the
backbone structure of the network, using the VGG-16 with
full convolutional layers as base model. The output of this
component is the coarse iris segmentation result which is
one input of the bilateral constraint domain transform.

Atrous convolution for iris segmentation The bound-
ary between iris and non-iris is not with same sharpness.
The edge between iris and sclera is not as sharp as the eye-
lash or eyebrow. The Atrous convolution with different di-
lation rates proposed in DeepLab v2 is suitable for charac-
terizing iris boundary. It can enlarge the field-of-view of
kernels without increasing parameters of the model. It uses
dilation d to enlarge the kernel with the size of f × f to
fe × fe as: fe = f + (f − 1)(d− 1).

The consecutive filter values are filled with d − 1 ze-
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Figure 2. Illustration of one iteration of the bilateral constraint domain transform. The black dashed arrow indicates the forward propaga-
tion, while the red dashed arrow indicates the back propagation. The red dashed box indicates the iris region, in which the edge map and
the coarse segmentation are recursively filtered across rows and columns.

ros. The Atrous Spatial Pyramid Pooling (ASPP) proposed
by DeepLab v2 is used in our task. The ASPP uses ‘con-
v6 1’, ‘conv6 2’, ‘conv6 3’ and ‘conv6 4’ as four paral-
lel branches with multiple dilation d1, d2, d3, d4 and fuses
them to generate the iris segmentation as shown in Figure 1,
d1 = 6, d2 = 12, d3 = 18, d4 = 24 in our experiments.

The DeepLab v2 conducts the fully connected Condi-
tional Random Fields (CRFs) to improve segmentation re-
sults. However, the probability estimate of CRFs show little
advances in detailed and complexity edge areas, such as the
eyelash and reflected light spots. The CRFs is time consum-
ing which requires more than 0.2 sec for image of 480*360
pixels. Therefore, the CRFs is not used in our models.

3.1.2 Rich features for the edge map generation

Another input of the bilateral constraint domain transform
is iris edge map generated from low level convolutional lay-
ers, as shown in Figure 1. In the edge detection task, using
richer convolutional features is more effective [15]. Low
level convolutional layers (conv1 to conv5) contains richer
edge features at different scales and sharpness degrees. We
exploit all of them to predict the edge map following [4].
For medial convolutional layers, the method rescales their
outputs to the original size. A concat layer concatenates
them to one output. A convolutional layer with 1× 1 kernel
is used to produce the iris edge prediction and ReLU makes
the prediction in range of zero to infinity.

3.1.3 Bilateral constraint domain transform

To further optimize the accuracy of iris segmentation, we
propose the bilateral constraint domain transform (BDT).
As shown in Figure 1, the BDT uses edge map and coarse
segmentation to constrain each other. One side, the iris edge
map generated from intermediate convolutional layers can
pass more detailed edge information to segmentation result-
s, which follows the basic idea of the domain transform
(DT) [4]. On the other side, iris region produced by coarse
segmentation can constrains edge filtering scope, which al-
lows the edge aware focusing on the interesting object parts.

Constraint forward propagation As illustrated in Fig-
ure 2, the BDT recursively filters inputs across rows and
columns through K iterations. During the forward propa-
gation, the filtering is performed along four directions (left
to right, right to left, top to bottom, and bottom to top) in
sequence as proposed in DT [4]. We limit these operations
within the iris area to further reduce the amount of compu-
tation, and modify the recursive formulation of the DT due
to its speed and efficiency [9]. For 2-D inputs of height H
and width W , the output yi,j is computed as:

yi,j = (1− wi,j)xi,j + wi,jyi,j−1 (1)
i = p, ..., q (1 ≤ p ≤ q ≤ H),

j = s, ..., t (2 ≤ s ≤ t ≤W )

where xi,j is the pixel value at (i, j)of the coarse iris seg-
mentation, p and q are the lower and upper bound of the iris
region in the vertical direction, s and t are the bound in the
horizontal direction. The weight wi,j ∈ [0, 1] is a feedback
coefficient [21] which is related to the iris edge map.

Constraint back propagation During the backward
propagation, the segmentation errors at the output yi,j are
back propagated through the DT onto its two inputs. To
avoid the interference from the non-iris area and constrain
the edge aware inside the object region, we add the same
limitation to both the coarse segmentation and the edge
map. We calculate the derivative as follows:

∂L

∂xi,j
← (1− wi,j)

∂L

∂yi,j
(2)

∂L

∂yi,j−1
← ∂L

∂yi,j−1
+ wi,j

∂L

∂yi,j
∂L

∂wi,j
← ∂L

∂wi,j
+ (yi,j−1 − xi,j)

∂L

∂yi,j

∂L

∂gi,j
← −

√
2

σk

σs

σr
wi,j

∂L

∂wi,j

i = q, ..., p (1 ≤ p ≤ q ≤ H),

j = t, ..., s (2 ≤ s ≤ t ≤W )

k = 1, ...,K
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where gi,j is the pixel value at (i, j)of the iris edge map, σs

and σr are the standard deviation of the filter kernel over the
inputs spatial domain and the reference edge maps range. k
represents the kth iteration, σk =

√
3σs2

K−k/
√
4K − 1.

Note that the recursions of i, j are opposite to the forward
propagation. K is used the same as [4], and the value of
σs and σr are related to the dataset. Since the location of
the generated iris region may not be accurate enough, we
expand five pixels per side of the region during the filtering.

3.2. Iris segmentation model pruning

Pruning filters in a single layer It is important to de-
termine which filters to prune. So we first prune the sin-
gle layer to observe its sensitivity to pruning. We exploit
the procedure of pruning [13] as: 1) For the ith convolu-
tional layer, let fi,j denotes jth filter, calculate its l1-norm
vj =

∑
|fi,j |; 2) Sort filters by vj ; 3) Prune m filters with

the smallest vj and their connecting feature maps; 4) Create
a new model with the remaining filter weights and retrain it.

We compare the pruned models and the retrained pruned
models. Some layers are sensitive to pruning as we can not
recover the accuracy after pruning them.

Pruning filters across multiple layers For layers which
are sensitive to pruning, we prune fewer or no filters of
them. We adopt the one-shot pruning method which prunes
filters across multiple layers at once and retrains the mod-
el [13]. After retraining, the number of parameters and
floating point operations (FLOP) are reduced while keep-
ing the performance almost intact or even better.

4. Experiments and Results
4.1. Datasets

We evaluate algorithms on two datasets. One is a subset
of UBIRIS.v2 [18], which contains 500(train) and 445(test)
pixel-level labeled images. One is a subset of CASIA.v4-
distance [1].400 iris images from the first 40 subjects are
manually labeled [14]. The first 300 images are used for
training and the other for testing, as the same setting as [14].
Experiments on two datasets are standalone. We resize al-
l images to 480 × 360 pixels for subsequent experiments.
We generate images in terms of image resolution, intensity,
blur, and add shadow effects in a random direction as [3] to
enlarge the database, resulting in 5000 training images for
UBIRIS.v2 and 3000 for CASIA.v4-distance.

4.2. Training pipeline

We fine-tune models from DeepLab v2 models [6] which
are trained for PASCAL VOC-2012 [8]. We conduct four
experiments: 1) Train the DeepLab v2 models for iris im-
ages; 2) Prune models from step 1 and retrain them to
reduce parameters and FLOP; 3) Add the standard do-
main transform to models in step 2 and fine-tune (note as

Table 1. The ASE of DeepLab v2 models. ‘CRFs’ indicates the
fully connected CRFs method.

Method UBIRIS.v2(%) CASIA.v4(%)
no CRFs CRFs no CRFs CRFs

DeepLab v2(VGG-16) 0.926 0.907 0.497 0.524
DeepLab v2(ResNet-101) 0.888 0.940 0.486 0.560

Table 2. For three pruning strategies, the best ASE of retraining
process are reported. ‘Params’ and ‘FLOP’ indicate the reduced
percentage of parameters and FLOP for each pruning strategies.

Method UBIRIS.v2(%) CASIA.v4(%)
ASE Params FLOP ASE Params FLOP

Prune 1 0.926 2.79 2.75 0.489 8.19 9.11
Prune 2 0.979 58.28 46.15 0.494 58.28 46.15
Prune 3 0.928 33.31 26.38 0.494 33.31 26.38

SEN U); 4) Add the bilateral constrain domain transform
to models in step 2 and fine-tune (note as SEN B).

4.3. Experimental results

The accuracies of models are measured by the average
segmentation error (ASE):

ASE =
1

N ×H ×W

∑
i,j∈(H,W )

G(i, j)⊕M(i, j) (3)

where N is the total number of the test images, H and W
are height and width, G and M are the ground truth mask
and the generated iris mask respectively. ⊕ represents an
exclusive OR operation to compute the segmentation error.
We first evaluate DeepLab v2 models on two datasets, as
shown in Table 1. Results are close or outperform the result
of [14]. It demonstrates the effectiveness of the DeepLab
v2 and it makes sense to use this architecture. We also use
ResNet-101 [11] based model as baseline which shows ad-
vantages on the UBIRIS.v2 dataset. It is reasonable to not
use CRFs which performs bad in most cases.

4.3.1 Model pruning results

We use three different pruning strategies, and the corre-
sponding results are shown in the Table 2.

(1) After sorting filters by l1-norm, we prune the small-
est filters of each convolutional layer independently with
different pruning ratios in the range of 10% to 90%, and e-
valuate the ASE of pruned model, seeing Figure 3. Pruning
some single layers may even improve the performance. We
first prune these filters and retrain. The pruned layers and
corresponding pruning ratios of models are:

(i) For UBIRIS.v2, we prune 10%, 30%, 70% of con-
v1 1, conv7 1, conv7 2, respectively.

(ii) For CASIA.v4-distance, we prune 30%, 10%, 40%,
60% of conv2 1, conv3 1, conv6 3, conv7 4, respectively.
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Figure 3. The ASE after pruning filters with the smallest absolute
weights sum for each single layer of models on datasets.
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Figure 4. The ASE after retraining the pruned models on datasets.

Table 3. The ASE of the SEN. ‘three’ indicates the three layers,
‘rich’ indicates all of the layers used by models. SEN U indicates
the SEN using the DT, SEN B using the BDT.

Method UBIRIS.v2(%) CASIA.v4(%)
three rich three rich

SEN U 0.923 0.883 0.491 0.480
SEN B 0.925 0.924 0.471 0.462

(2) We retrain all pruned models separately, and ASEs
are listed in Figure 4. Some layers are sensitive to prun-
ing, as we can not recover their accuracies even using small
pruning ratios, such as conv2 2 layer for both datasets. We
empirically prune 50% filters of each layer from conv5 1 to
the end of the model. Table 2 demonstrates that the ASE
of the pruned model for the CASIA.v4-distance can be re-
stored. But we can not restore the ASE for the UBIRIS.v2
because 5th layer are sensitive to pruning for this dataset
(seeing Figure 4).

(3) Based on the result of (2), we prune 50% filters of
each layer from conv6 1 to conv7 4.

As a trade-off between the accuracy and the number of
parameters, we exploit the pruning strategy (1) for the U-
BIRIS.v2 and (2) for the CASIA.v4-distance.

Table 4. Comparisons of the ASE with other methods.
Method UBIRIS.v2 (%) CASIA.v4 (%)

Proposed SEN 0.88 0.46
MFCNs [14] 0.90 0.59
RTV-L1 [27] 1.21 0.68
Tan et al. [24] 1.31 -

Tan and Kumar [23] 1.72 0.81
Proença [17] 1.87 -

Tan and Kumar [22] 1.90 1.13

Iter = 10000, mean PSNR = 6.35

Iter = 100000, mean PSNR = 8.21Iter = 50000, mean PSNR = 7.78Iter = 20000, mean PSNR = 6.86

Iris image Iris edge (ground truth)

Figure 5. PSNRs of the iris edge map of different iterations.

4.3.2 Bilateral constraint segmentation results

To verify the effectiveness of the domain transform, we first
generate the iris edge map from ground truthR) to measure
the , and use the Peak Signal-to-Noise Ratio (PSN generat-
ed edge map. As in Figure 5, as the number of iterations
increases during training, the iris edge gets clearer.

As shown in Table 3, the ASE of ‘rich’ (generate edge
maps from all five low level layers) are better than ‘three’
(generate edge maps from conv2 2, conv3 3 and conv4 3)
for both datasets which shows the superiority of the rich
convolutional features. Results of BDT and the DT are
compared. The best result on CASIA.v4-distance is ob-
tained by using the SEN B, while UBIRIS.v2 by using
SEN U. It is caused by the difference of edge information
of two datasets. Because the UBIRIS.v2 benchmark is ac-
quired in VL illumination and the CASIA.v4-distance in
NIR illumination, the iris texture and the edge of the for-
mer are more weaker than the latter. Therefore, the SEN B
which is designed to further optimize the iris edge map may
be worse than the SEN U for the UBIRIS.v2.

Table 4 compare the proposed method with other meth-
ods in recent publications. Results obtained by SEN
improve over the former state-of-the-arts by 2.22% and
22.03% on UBIRIS.v2 and CASIA.v4-distance separately.
We achieve the state-of-the-art results without any pre- and
post-processing. Figure 6 shows some segmentation results.

5. Conclusions
In this paper, we present an end-to-end model, namely

Seg-Edge bilateral constraint network. The iris edge map
generated from rich convolutional layers optimize the iris
segmentation by aligning it with the iris boundary. The iris
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Figure 6. Segmentation results of two datasets by using the SEN.
The green pixels indicate non-iris pixels are predicted as iris pix-
els, and the red pixels are the opposite.

region produced by the coarse segmentation limits the s-
cope. It makes the edge filtering pay more attention to the
interesting target. We compress the model while keeping
the performance levels almost intact and even better by us-
ing l1-norm. The proposed model advances the state-of-the-
art iris segmentation accuracies.
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